The Placement-Ready Software
Engineer (PRSE) Program: A Curriculum
for Elite Talent Development

The PRSE Program: An Architectural Overview

This document outlines the curriculum for the Placement-Ready Software Engineer (PRSE)
Program, a premier, six-month upskilling initiative designed to transform ambitious college
students into elite, industry-ready software engineers. The program is designed as a strategic
partnership for academic institutions, offering a direct and effective bridge between
foundational computer science education and the dynamic world of professional software
development. By focusing on deep understanding, practical problem-solving, and the
application of cutting-edge technologies, the PRSE program equips graduates with a durable
skill set, ensuring they are not just prepared for their first job, but poised for a long-term,
high-impact career in technology.

The Modern Tech Talent Gap: A University-Industry Bridge

The technology landscape evolves at a pace that often outstrips traditional academic
curricula. While universities provide an indispensable foundation in computer science theory,
a gap often persists between this knowledge and the practical, hands-on skills demanded by
leading technology employers. Companies today seek graduates who can contribute to
complex projects from day one, understand how to build scalable systems, and solve
ambiguous problems using established industry patterns.

The PRSE Program is architected to be this crucial bridge. It is not a replacement for a
computer science degree but a powerful accelerator that builds upon it. By partnering with
universities, the program offers a structured pathway for students to augment their academic
learning with a curriculum meticulously aligned with the hiring requirements of top-tier
technology firms. The program's content is dynamic and designed to evolve with the needs of
the industry, ensuring that every graduate enters the job market with the most current and
sought-after competencies.

Program Philosophy: Engineering from First Principles

Our core teaching approach is a departure from rote memorization. It is built on the
conviction that true engineering expertise—the kind that allows a developer to solve new
problems and adapt to new technologies throughout a career—stems from a deep,
first-principles understanding of how software works. This philosophy is manifested through
two foundational pillars that guide the entire curriculum:

1.

Algorithmic Thinking through Pattern Recognition: The conventional approach to
preparing for technical interviews often involves memorizing hundreds of distinct coding
problems. This method is inefficient and builds fragile knowledge. The PRSE program
rejects this "grind" mentality in favor of a more intelligent strategy: mastering a finite set
of recurring algorithmic patterns. The curriculum is structured around the principle that a
vast majority of complex interview questions are simply variations of a small number of
core patterns. By focusing on deeply understanding these patterns, students develop a
problem-solving intuition that allows them to deconstruct and solve unfamiliar problems,
rather than merely recalling solutions.

Full Stack Craftsmanship through Deconstruction: In modern web development,
powerful frameworks like React abstract away immense complexity. However, this
abstraction can become a "black box," leaving developers with a superficial
understanding of how their applications actually work. The PRSE program directly
confronts this by guiding students through the process of building their own simplified
version of React from scratch. This exercise demystifies the "magic" of modern
frameworks, forcing students to grapple with core concepts like the virtual DOM, state
management, and component lifecycle. The result is a more resilient, adaptable, and
confident engineer who understands the "why" behind the framework's "what."

The High-Intensity, Part-Time Learning Model

Recognizing that participants are full-time college students, the PRSE program is delivered
through a high-intensity, part-time blended learning model. This structure is designed to
integrate with a demanding academic schedule, maximizing learning outcomes without
compromising collegiate responsibilities.

Weekday Self-Paced Learning (10-15 hours/week): From Monday to Friday, students
engage with the curriculum through our online learning platform. This independent study
involves curated readings, video lectures, and hands-on coding exercises. This flexible
format allows students to schedule their learning around their college classes and other
commitments.

Weekend Live Intensive Workshops (4-6 hours/weekend): The weekends are
reserved for high-touch, synchronous learning. These mandatory workshops are led by
industry-experienced instructors and are the collaborative heart of the program.
Sessions are dedicated to interactive problem-solving, live coding demonstrations, and
collaborative project work.

Continuous Support: To ensure no student is left behind, the program provides
comprehensive academic support seven days a week. Students have access to
instructors and teaching assistants via dedicated communication channels for
troubleshooting, concept clarification, and guidance.

The ACP Framework: Assessment, Cohorting, and Personalization

A cornerstone of the PRSE program is our unigue system for student growth: the Assessment,
Cohorting, and Personalization (ACP) Framework. This system ensures that the learning
experience is tailored to the individual needs of each student, maximizing both engagement
and outcomes.

Initial Assessment: The journey begins with a pre-program assessment that serves as a
crucial diagnostic tool. It evaluates foundational programming knowledge and
problem-solving aptitude. The results provide a detailed baseline of each student's
strengths and weaknesses, which informs their personalized learning journey.

Dynamic Cohorting: Based on the initial assessment and ongoing performance in skill
contests, students are grouped into dynamic, skill-based cohorts (e.g., 'Foundation,’
'‘Advanced,' 'Expert’). These groups are fluid, and students can move between them as
they demonstrate mastery. This approach allows instructors to deliver more targeted
instruction, reinforcing core principles for one group while challenging another with
advanced problems.

Personalized Learning Paths (PLPs): The ACP framework's ultimate output is the
generation of Personalized Learning Paths for each student. A PLP is a customized
curriculum overlay that adapts to a student's progress. For example, a student struggling
with a specific algorithm will automatically be assigned supplementary materials and
targeted practice problems. Conversely, a student who quickly masters a topic will be
presented with optional, advanced challenges. Progress is continuously monitored,
ensuring the PLP remains relevant and effective throughout the program.

Phase | (Months 1-3): Engineering from First Principles

The first three months of the program are an intensive immersion designed to forge an
unshakeable foundation in the two parallel pillars of modern software engineering: algorithmic
problem-solving and full-stack application development. This concurrent structure simulates
the cognitive demands of a real-world engineering role, where developers must constantly
switch between abstract logical design and concrete implementation details.

Module: Algorithmic Thinking via Pattern Recognition (DSA)

This module is the core of our technical interview preparation, engineered to build deep and
transferable problem-solving skills.

e Philosophy: The curriculum is built on the rejection of the "grind 500 problems"
methodology. Instead, the program is founded on the principle that a small, finite set of
recurring patterns forms the blueprint for the vast majority of algorithmic problems. By
mastering these patterns, students learn to see the underlying structure of a new
problem and can quickly identify an effective approach.

e Core Patterns Covered: The module is a systematic exploration of 15 essential patterns,
including:
1. Sliding Window
Two Pointers / Fast & Slow Pointers
Merge Intervals
Cyclic Sort
In-place Reversal of a Linked List
Tree Breadth-First Search (BFS)
Tree Depth-First Search (DFS)
Topological Sort
9. Greedy Algorithms
10. Binary Search
11. Heaps / Priority Queues
12. Backtracking
13. Dynamic Programming
14. Tries (Prefix Trees)
15. Graphs

©O NSOk WN

e Learning Methodology: For each pattern, students follow a rigorous three-step process:

1. Deconstruct the Core Idea: Understand the theory behind the pattern—what it is,
why it works, and its efficiency.

2. Solve the Canonical Problem: Work through a classic problem that perfectly
exemplifies the pattern.

3. Apply to Diverse Problems: Solve a curated set of 3-5 problems that apply the
same core pattern in different contexts, forcing students to generalize their
knowledge.

Module: Full Stack Craftsmanship

Running parallel to the DSA module, this track takes students from zero to building and
deploying a complete web application, with a unique emphasis on understanding the
fundamental mechanics of the tools they use.

Frontend Engineering: Mastering the Visual Layer

This sub-module ensures students can build beautiful, responsive, and interactive user
interfaces.

e HTML & CSS Fundamentals: The module begins with a rapid yet comprehensive review
of modern HTML and the core concepts of CSS.

e Deep Dive into CSS Layout: Significant time is dedicated to achieving mastery over
modern CSS layout engines. Students will engage in hands-on exercises to build
complex, responsive layouts from scratch, gaining true fluency in the Box Model,
Flexbox, and Grid.

e JavaScript & DOM Manipulation: The curriculum covers modern JavaScript (ES6+),
focusing on concepts critical for building complex applications, including functions,
scope, asynchronous programming, and direct manipulation of the Document Object
Model (DOM).

The Differentiator: "Build Your Own React"

This unique sub-module is the pedagogical heart of the Full Stack track. It is designed to
combat "imposter syndrome" and create engineers with a truly foundational understanding of
their primary tool.

e Rationale: Before touching the official React library, students will build a simplified
version of it. This process deconstructs the "magic," preventing them from treating the
framework as an inscrutable black box. By building the core engine themselves, they gain
a profound and lasting understanding of how modern frontend frameworks operate.

e Step-by-Step Curriculum: The module is structured as an incremental build:

1. createElement and render: Students first implement functions that transform
JSX-like syntax into a JavaScript object and then render it to the page.

2. Concurrent Mode & Fibers: Students implement a basic work loop and the Fiber
data structure to understand how React handles rendering without blocking the
user interface.

3. Render/Commit Phases & Reconciliation: Students implement the two main
phases of rendering and write a basic reconciliation (or "diffing") algorithm to
determine the minimal set of changes needed to update the DOM.

4. Function Components & Hooks: Finally, students refactor their library to support
modern functional components and implement a simplified version of the useState
hook.

e Transition to Official React: Only after completing this foundational exercise do
students transition to the official React library. Armed with this deep internal knowledge,
they learn the full APl and advanced patterns with unprecedented clarity.

Backend Foundations: Building the Server-Side

To complete the full stack, students will learn to build robust, scalable server-side applications
and APls.

e Introduction to Node.js & Express: Students will learn the fundamentals of server-side
JavaScript using Node.js and the powerful Express.js framework to build their first web
server, handle HTTP requests, and implement routing logic.

e Database Integration: The program exposes students to both SQL and NoSQL database
paradigms.

o PostgreSQL (SQL): Students will learn the principles of relational data modeling and
writing structured queries with PostgreSQL, a powerful database known for its
reliability.

o MongoDB (NoSQL): Students will explore the document data model with MongoDB,
which is often a natural fit for JavaScript applications.

e API Design: The module culminates in teaching the principles of building RESTful APIs.

Students will learn the conventions for using HTTP methods (GET, POST, PUT, DELETE) to
create, read, update, and delete resources.

Project-Based Learning: Building Scalable Backends: To apply these concepts,
students will undertake projects inspired by leading Indian tech companies.

o

Project 1: Replicating the Core of PhonePe's Transaction System: Students will
build a backend service that mimics PhonePe's ability to handle transactions. They'll
use Node.js and Express to create APl endpoints for initiating payments and checking
transaction status, and use MongoDB to store user and transaction data. This project
solidifies their understanding of building reliable APIs for financial applications.
Project 2: Building a Zerodha-Inspired Trading Backend: Students will tackle the
challenge of real-time data and low-latency transactions. They will build a backend
that can manage user orders and simulate a real-time data feed. This project will
emphasize the use of PostgreSQL for its transactional integrity, giving them
experience with the demands of high-performance financial platforms.

Phase Il (Months 4-5): Architecting for Scale and
Intelligence

Having established a robust foundation, students in Phase Il transition from building features
to designing systems. The focus shifts to the critical non-functional requirements—scalability,
reliability, and availability—that define production-grade software.

Module: High-Scale System Design

This module demystifies the process of designing software capable of serving millions of
users through practical, case-study-driven learning.

Core Concepts: The module begins with an industry-focused overview of essential
concepts:

O O O O O

Vertical vs. Horizontal Scaling

Load Balancing and Caching

Database Sharding and Replication

The CAP Theorem (Consistency, Availability, Partition Tolerance)
SQL vs. NoSQL at Scale

Case Study Method: The core of the module is a "deconstruction" of real-world,
hyper-scale systems. This approach uses recognizable companies to make architectural
challenges and solutions more tangible and inspiring.

Deconstructing Zerodha: Blueprint for a Low-Latency Trading Platform

e Problem Context: The first case study examines Zerodha, India's largest stock
brokerage. The central challenge is to design a platform that handles millions of
concurrent users and processes millions of orders per day with extremely low latency.

e Architectural Deep Dive: Students will analyze key architectural decisions, such as:

o Polyglot Backend: The strategic use of different languages (like Go and Python) for
different tasks.

o Purpose-Driven Data Layer: A multi-database strategy using PostgreSQL for
transactions and Redis for high-speed caching.

o Event-Driven Microservices: The use of message queues like Kafka to create a
decoupled, scalable, and fault-tolerant architecture.

o Scalability Pattern: The "Silo" Architecture: A key lesson in horizontal scaling
where independent, self-contained setups each serve a subset of users, preventing
system-wide failures.

Deconstructing PhonePe: Engineering for a Billion-Transaction Ecosystem

e Problem Context: The second case study focuses on PhonePe, a leading digital
payments platform. The challenge here is engineering for massive transaction volume,
extreme reliability, and providing users with an instantaneous and accurate transaction
history.

e Architectural Deep Dive: Students will dissect PhonePe's architecture, focusing on:

o Classic 3-Tier Architecture: An examination of their implementation of the
Presentation (React.js), Application (Node.js/Express.js), and Data (MongoDB) layers.

o Core Component: The Transaction Store (TStore): A deep dive into the design of
TStore, the backbone of their system. Students will learn about the critical decision to
separate read and write paths for independent scaling, using Kafka as a Write-Ahead
Log for durability.

o Platform Engineering Principles: An exploration of PhonePe's mature engineering
culture, including their use of server-driven Ul, robust CI/CD pipelines, and internal
SDKs to standardize functionalities.

Module: Building with Agentic Al

This module introduces students to the next major paradigm in software development:
Agentic Al. This equips graduates with a significant competitive advantage and signals to
employers their readiness for the future of the industry.

Foundational Concepts: The module begins by establishing a clear conceptual
framework for Agentic Al.

o

The Core Loop: Students will learn the fundamental operational cycle of an Al agent:
Perception (gathering data) -> Reasoning (analyzing data and formulating a
strategy) -> Planning (breaking a goal into steps) -> Action (executing tasks) ->
Reflection (learning from the outcome).

Key Distinctions: The curriculum will define the difference between Generative Al
(a tool for content creation) and Agentic Al (a system that orchestrates multiple
agents to pursue complex, multi-step goals with minimal human intervention).

Project-Based Learning: The theoretical concepts are immediately put into practice
through hands-on project work.

o

Project A: Al Research Agent: Students will build an autonomous agent that, given
a research query, can independently browse the web, synthesize content from
multiple sources, and compile a structured report.

Project B: Personalized Study Plan Generator: Students will create an educational
agent that assesses a user's knowledge level on a topic and then autonomously
generates a tailored, week-by-week study plan with curated links to articles, videos,
and exercises.

Phase lll (Month 6): The Capstone & Career Launchpad

The final month of the program is an intensive synthesis of all preceding learning. This phase
transitions students from learners to professional-caliber engineers, focusing on
demonstrating mastery and activating their careers.

The Capstone Project: A Full-Spectrum Demonstration

The capstone project serves as the centerpiece of each student's professional portfolio. It is a
demanding, team-based endeavor to design, build, and deploy a production-grade web
application.

Objective: Working in small, agile teams, students will execute a complex software

project from the ground up. The project is intentionally designed to be a rich source of

talking points for future interviews, forcing students to make non-trivial architectural

decisions.

Core Requirements: Every capstone project must satisfy a set of stringent technical

requirements:

1. Full Stack Implementation: The application must feature a modern frontend built
with React and a robust backend built with Node.js, connected to a PostgreSQL or
MongoDB database.

2. Scalable Architecture: The backend must incorporate at least two advanced
concepts from the System Design module, such as a caching layer with Redis or a
message queue for asynchronous tasks.

3. Integrated Agentic Al Feature: The application must include a meaningful feature
powered by an Al agent, such as a conversational shopping assistant or an
automated task generator.

4. Professional Deployment & CI/CD: The project must be deployed to a public cloud

platform (e.g, AWS, Vercel) and include a basic Continuous
Integration/Continuous Deployment (CI/CD) pipeline using tools like GitHub
Actions.

The completed capstone project serves as tangible, compelling evidence of a student's ability
to build complex, modern software.

Placement Readiness Protocol

This protocol is a systematic series of workshops and simulations designed to prepare
students for the rigors of the technical hiring process.

Professional Branding Workshop: A hands-on workshop focused on crafting the
essential artifacts of a professional job search. Career coaches work with students to
optimize their resume, build a sophisticated LinkedIn profile, and curate a polished
GitHub portfolio.

Behavioral Interview Preparation: This workshop trains students on mastering the
behavioral interview. They learn to use structured frameworks like the STAR (Situation,
Task, Action, Result) method to articulate their experiences effectively.

High-Fidelity Mock Interviews (Maximum 2 per student): The cornerstone of our
placement preparation is a pair of rigorous, one-on-one mock interviews with seasoned
industry professionals. These are not simple Q&A sessions; they are full-length,
high-pressure simulations designed to mirror the actual interview process at top tech
companies. Each 60-minute interview is a comprehensive assessment, covering a mix of
data structures, algorithms, and system design questions. This integrated approach

prepares students for the reality of modern technical interviews, where they must
demonstrate proficiency across multiple domains in a single session. The limit of two
interviews per student ensures each session is of the highest quality and is followed by
in-depth, personalized feedback.

e Personalized Feedback and Action Plan: Each mock interview is immediately followed
by a detailed feedback session. The interviewer provides a comprehensive breakdown of
the student's performance, highlighting strengths and identifying specific, actionable
areas for improvement.

The 24-Week PRSE Program Schedule

The following matrix provides a detailed, week-by-week operational plan for the entire
24-week program. This schedule serves as a clear roadmap for university partners,

instructors, and students, illustrating the program's intensive pace and strategic milestones.

Table 1: The 24-Week PRSE Curriculum Matrix

Week DSA Track Full Stack Advanced Career Prep
(Topic & Key Track (Topic Topics & &
Patterns) & Project Capstone Assessment
Milestone)
1 Program Frontend: - Initial Skills
Orientation & HTML Assessment.
Setup. Fundamentals
Algorithmic & Semantic
Complexity Markup.
(Big O).
2 Arrays & Frontend: = -
Strings. Intro to CSS,
Foundational Selectors, The
Problem Cascade.
Solving.
3 Pattern 1: Two Frontend: CSS | - -

Pointers Deep Dive: The
(Slow/Fast, Box Model &
Opposite Positioning.
Ends).
Pattern 2: Frontend: CSS Skill
Sliding Deep Dive: Contest #1:
Window. Flexbox & Grid. Arrays,
Milestone: Strings, Two
Build a Pointers.
complex
responsive
portfolio page.
Pattern 3: Frontend: -
In-place JavaScript
Reversal of a Fundamentals
Linked List. (ES6+), Scope,
Closures.
Stacks & Frontend: -
Queues. JavaScript
Asynchronous
Programming
(Promises,
async/await).
Pattern 4: Frontend: Skill
Tree Traversal DOM Contest #2:
- BFS. Manipulation & Linked Lists,
Events. Stacks,
Milestone: Queues.
Build an
interactive
vanilla JS
application
(e.g., To-Do
List).
Pattern 5: "Build Your -
Tree Traversal Own React™:

- DFS. Step | &I -
createElement
& render.
9 Pattern 6: "Build Your -
Merge Own React™:
Intervals. Step NI &1V -
Concurrent
Mode & Fibers.
10 Pattern 7: "Build Your Skill
Cyclic Sort. Own React™: Contest #3:
StepV & VI - Trees &
Reconciliation Intervals.
& Commit
Phase.
1 Pattern 8: "Build Your -
Heaps / Own React™:
Priority Step VI & VIII -
Queues. Function
Components &
useState Hook.
Milestone:
Complete
simplified
React library.
12 Pattern 9: Official Mid-Program
Binary Search React: Intro to Review.
(and its modern React,
variations). JSX,
Components,
Props, State.
13 Pattern 10: Official -
Greedy React: Hooks
Algorithms. (useEffect,
useContext),
Client-Side

Routing with

React Router.

Milestone:
Build a
multi-page
React
application.
14 Pattern 11: Backend: Intro | - Skill
Backtracking. to Node.js & Contest #4:
Express. Heaps,
Building a Binary
simple web Search,
server. Greedy.
15 Pattern 12: Backend: System Design: | -
Dynamic RESTful API Core Concepts
Programming Design. (Scaling,
(1D). Building CRUD Caching, Load
endpoints. Balancing, CAP
Theorem).
16 Pattern 13: Backend: Intro | System Design: Career
Dynamic to SQL & Deconstructing Prep:
Programming PostgreSQL. Zerodha's Resume &
(2D). Project: Start Low-Latency LinkedIn
Zerodha-inspir | Architecture. Workshop.
ed backend.
17 Pattern 14: Backend: Intro | System Design: | -
Topological to NoSQL & Deconstructing
Sort. MongoDB. PhonePe's
Project: Start TStore
PhonePe-inspi | Architecture.
red backend.
18 Pattern 15: Full Stack Agentic Al: Skill
Graphs (Matrix | Integration: Foundational Contest #5:
Traversal, Connecting Concepts (The DP,
Union-Find). React Agentic Loop). Backtracking
Frontend to , Graphs.

Node.js

Backend.

Milestone:
Complete
full-stack
MERN/PERN
application.
19 DSA Review & Project Agentic Al: Career
Advanced Refinement & Project Work - Al | Prep:
Problems. Bug Fixing. Research Agent Behavioral
or Personalized Interview
Study Planner. Workshop
(STAR
Method).
20 DSA Review & = Agentic Al: -
Advanced Project Work -
Problems. Tool Integration
& API Calls.
21 - - Capstone Mock
Project: Team Interview
Formation, #1.
Ideation, and
System Design
Document.
22 - - Capstone Mock
Project: Interview
Backend & #2,
Database
Implementation.
23 - - Capstone -
Project:
Frontend
Implementation
& Al Feature

Integration.

24

Capstone
Project:
Finalization,
Deployment, and
Demo Day
Presentations.

Program
Graduation &
Final
Portfolio
Review.

	The Placement-Ready Software Engineer (PRSE) Program: A Curriculum for Elite Talent Development
	The PRSE Program: An Architectural Overview
	The Modern Tech Talent Gap: A University-Industry Bridge
	Program Philosophy: Engineering from First Principles
	The High-Intensity, Part-Time Learning Model
	The ACP Framework: Assessment, Cohorting, and Personalization

	
	
	Phase I (Months 1-3): Engineering from First Principles
	Module: Algorithmic Thinking via Pattern Recognition (DSA)
	Module: Full Stack Craftsmanship
	Frontend Engineering: Mastering the Visual Layer
	The Differentiator: "Build Your Own React"
	Backend Foundations: Building the Server-Side

	Phase II (Months 4-5): Architecting for Scale and Intelligence
	Module: High-Scale System Design
	Deconstructing Zerodha: Blueprint for a Low-Latency Trading Platform
	Deconstructing PhonePe: Engineering for a Billion-Transaction Ecosystem

	
	Module: Building with Agentic AI

	Phase III (Month 6): The Capstone & Career Launchpad
	The Capstone Project: A Full-Spectrum Demonstration
	Placement Readiness Protocol

	The 24-Week PRSE Program Schedule
	Table 1: The 24-Week PRSE Curriculum Matrix

