
The Placement-Ready Software 
Engineer (PRSE) Program: A Curriculum 
for Elite Talent Development 
 

The PRSE Program: An Architectural Overview 
 

This document outlines the curriculum for the Placement-Ready Software Engineer (PRSE) 
Program, a premier, six-month upskilling initiative designed to transform ambitious college 
students into elite, industry-ready software engineers. The program is designed as a strategic 
partnership for academic institutions, offering a direct and effective bridge between 
foundational computer science education and the dynamic world of professional software 
development. By focusing on deep understanding, practical problem-solving, and the 
application of cutting-edge technologies, the PRSE program equips graduates with a durable 
skill set, ensuring they are not just prepared for their first job, but poised for a long-term, 
high-impact career in technology. 

 

The Modern Tech Talent Gap: A University-Industry Bridge 
 

The technology landscape evolves at a pace that often outstrips traditional academic 
curricula. While universities provide an indispensable foundation in computer science theory, 
a gap often persists between this knowledge and the practical, hands-on skills demanded by 
leading technology employers. Companies today seek graduates who can contribute to 
complex projects from day one, understand how to build scalable systems, and solve 
ambiguous problems using established industry patterns. 

The PRSE Program is architected to be this crucial bridge. It is not a replacement for a 
computer science degree but a powerful accelerator that builds upon it. By partnering with 
universities, the program offers a structured pathway for students to augment their academic 
learning with a curriculum meticulously aligned with the hiring requirements of top-tier 
technology firms. The program's content is dynamic and designed to evolve with the needs of 
the industry, ensuring that every graduate enters the job market with the most current and 
sought-after competencies. 



Program Philosophy: Engineering from First Principles 
 

Our core teaching approach is a departure from rote memorization. It is built on the 
conviction that true engineering expertise—the kind that allows a developer to solve new 
problems and adapt to new technologies throughout a career—stems from a deep, 
first-principles understanding of how software works. This philosophy is manifested through 
two foundational pillars that guide the entire curriculum: 

1.​ Algorithmic Thinking through Pattern Recognition: The conventional approach to 
preparing for technical interviews often involves memorizing hundreds of distinct coding 
problems. This method is inefficient and builds fragile knowledge. The PRSE program 
rejects this "grind" mentality in favor of a more intelligent strategy: mastering a finite set 
of recurring algorithmic patterns. The curriculum is structured around the principle that a 
vast majority of complex interview questions are simply variations of a small number of 
core patterns. By focusing on deeply understanding these patterns, students develop a 
problem-solving intuition that allows them to deconstruct and solve unfamiliar problems, 
rather than merely recalling solutions. 

2.​ Full Stack Craftsmanship through Deconstruction: In modern web development, 
powerful frameworks like React abstract away immense complexity. However, this 
abstraction can become a "black box," leaving developers with a superficial 
understanding of how their applications actually work. The PRSE program directly 
confronts this by guiding students through the process of building their own simplified 
version of React from scratch. This exercise demystifies the "magic" of modern 
frameworks, forcing students to grapple with core concepts like the virtual DOM, state 
management, and component lifecycle. The result is a more resilient, adaptable, and 
confident engineer who understands the "why" behind the framework's "what." 

 

The High-Intensity, Part-Time Learning Model 
 

Recognizing that participants are full-time college students, the PRSE program is delivered 
through a high-intensity, part-time blended learning model. This structure is designed to 
integrate with a demanding academic schedule, maximizing learning outcomes without 
compromising collegiate responsibilities. 

●​ Weekday Self-Paced Learning (10-15 hours/week): From Monday to Friday, students 
engage with the curriculum through our online learning platform. This independent study 
involves curated readings, video lectures, and hands-on coding exercises. This flexible 
format allows students to schedule their learning around their college classes and other 
commitments. 



●​ Weekend Live Intensive Workshops (4-6 hours/weekend): The weekends are 
reserved for high-touch, synchronous learning. These mandatory workshops are led by 
industry-experienced instructors and are the collaborative heart of the program. 
Sessions are dedicated to interactive problem-solving, live coding demonstrations, and 
collaborative project work. 

●​ Continuous Support: To ensure no student is left behind, the program provides 
comprehensive academic support seven days a week. Students have access to 
instructors and teaching assistants via dedicated communication channels for 
troubleshooting, concept clarification, and guidance. 

 

The ACP Framework: Assessment, Cohorting, and Personalization 
 

A cornerstone of the PRSE program is our unique system for student growth: the Assessment, 
Cohorting, and Personalization (ACP) Framework. This system ensures that the learning 
experience is tailored to the individual needs of each student, maximizing both engagement 
and outcomes. 

●​ Initial Assessment: The journey begins with a pre-program assessment that serves as a 
crucial diagnostic tool. It evaluates foundational programming knowledge and 
problem-solving aptitude. The results provide a detailed baseline of each student's 
strengths and weaknesses, which informs their personalized learning journey. 

●​ Dynamic Cohorting: Based on the initial assessment and ongoing performance in skill 
contests, students are grouped into dynamic, skill-based cohorts (e.g., 'Foundation,' 
'Advanced,' 'Expert'). These groups are fluid, and students can move between them as 
they demonstrate mastery. This approach allows instructors to deliver more targeted 
instruction, reinforcing core principles for one group while challenging another with 
advanced problems. 

●​ Personalized Learning Paths (PLPs): The ACP framework's ultimate output is the 
generation of Personalized Learning Paths for each student. A PLP is a customized 
curriculum overlay that adapts to a student's progress. For example, a student struggling 
with a specific algorithm will automatically be assigned supplementary materials and 
targeted practice problems. Conversely, a student who quickly masters a topic will be 
presented with optional, advanced challenges. Progress is continuously monitored, 
ensuring the PLP remains relevant and effective throughout the program. 

 

 
 



Phase I (Months 1-3): Engineering from First Principles 
The first three months of the program are an intensive immersion designed to forge an 
unshakeable foundation in the two parallel pillars of modern software engineering: algorithmic 
problem-solving and full-stack application development. This concurrent structure simulates 
the cognitive demands of a real-world engineering role, where developers must constantly 
switch between abstract logical design and concrete implementation details. 

 

Module: Algorithmic Thinking via Pattern Recognition (DSA) 
 

This module is the core of our technical interview preparation, engineered to build deep and 
transferable problem-solving skills. 

●​ Philosophy: The curriculum is built on the rejection of the "grind 500 problems" 
methodology. Instead, the program is founded on the principle that a small, finite set of 
recurring patterns forms the blueprint for the vast majority of algorithmic problems. By 
mastering these patterns, students learn to see the underlying structure of a new 
problem and can quickly identify an effective approach. 

 

●​ Core Patterns Covered: The module is a systematic exploration of 15 essential patterns, 
including: 
1.​ Sliding Window 
2.​ Two Pointers / Fast & Slow Pointers 
3.​ Merge Intervals 
4.​ Cyclic Sort 
5.​ In-place Reversal of a Linked List 
6.​ Tree Breadth-First Search (BFS) 
7.​ Tree Depth-First Search (DFS) 
8.​ Topological Sort 
9.​ Greedy Algorithms 
10.​Binary Search 
11.​Heaps / Priority Queues 
12.​Backtracking 
13.​Dynamic Programming 
14.​Tries (Prefix Trees) 
15.​Graphs 

 

 



●​ Learning Methodology: For each pattern, students follow a rigorous three-step process: 
1.​ Deconstruct the Core Idea: Understand the theory behind the pattern—what it is, 

why it works, and its efficiency. 
2.​ Solve the Canonical Problem: Work through a classic problem that perfectly 

exemplifies the pattern. 
3.​ Apply to Diverse Problems: Solve a curated set of 3-5 problems that apply the 

same core pattern in different contexts, forcing students to generalize their 
knowledge. 

 

Module: Full Stack Craftsmanship 
 

Running parallel to the DSA module, this track takes students from zero to building and 
deploying a complete web application, with a unique emphasis on understanding the 
fundamental mechanics of the tools they use. 

 

Frontend Engineering: Mastering the Visual Layer 

 

This sub-module ensures students can build beautiful, responsive, and interactive user 
interfaces. 

●​ HTML & CSS Fundamentals: The module begins with a rapid yet comprehensive review 
of modern HTML and the core concepts of CSS. 

●​ Deep Dive into CSS Layout: Significant time is dedicated to achieving mastery over 
modern CSS layout engines. Students will engage in hands-on exercises to build 
complex, responsive layouts from scratch, gaining true fluency in the Box Model, 
Flexbox, and Grid. 

●​ JavaScript & DOM Manipulation: The curriculum covers modern JavaScript (ES6+), 
focusing on concepts critical for building complex applications, including functions, 
scope, asynchronous programming, and direct manipulation of the Document Object 
Model (DOM). 

 

 

 



 

The Differentiator: "Build Your Own React" 

This unique sub-module is the pedagogical heart of the Full Stack track. It is designed to 
combat "imposter syndrome" and create engineers with a truly foundational understanding of 
their primary tool. 

●​ Rationale: Before touching the official React library, students will build a simplified 
version of it. This process deconstructs the "magic," preventing them from treating the 
framework as an inscrutable black box. By building the core engine themselves, they gain 
a profound and lasting understanding of how modern frontend frameworks operate. 

●​ Step-by-Step Curriculum: The module is structured as an incremental build: 
1.​ createElement and render: Students first implement functions that transform 

JSX-like syntax into a JavaScript object and then render it to the page. 
2.​ Concurrent Mode & Fibers: Students implement a basic work loop and the Fiber 

data structure to understand how React handles rendering without blocking the 
user interface. 

3.​ Render/Commit Phases & Reconciliation: Students implement the two main 
phases of rendering and write a basic reconciliation (or "diffing") algorithm to 
determine the minimal set of changes needed to update the DOM. 

4.​ Function Components & Hooks: Finally, students refactor their library to support 
modern functional components and implement a simplified version of the useState 
hook. 

●​ Transition to Official React: Only after completing this foundational exercise do 
students transition to the official React library. Armed with this deep internal knowledge, 
they learn the full API and advanced patterns with unprecedented clarity. 

 

Backend Foundations: Building the Server-Side 

To complete the full stack, students will learn to build robust, scalable server-side applications 
and APIs. 

●​ Introduction to Node.js & Express: Students will learn the fundamentals of server-side 
JavaScript using Node.js and the powerful Express.js framework to build their first web 
server, handle HTTP requests, and implement routing logic. 

●​ Database Integration: The program exposes students to both SQL and NoSQL database 
paradigms. 
○​ PostgreSQL (SQL): Students will learn the principles of relational data modeling and 

writing structured queries with PostgreSQL, a powerful database known for its 
reliability. 

○​ MongoDB (NoSQL): Students will explore the document data model with MongoDB, 
which is often a natural fit for JavaScript applications. 

●​ API Design: The module culminates in teaching the principles of building RESTful APIs. 



Students will learn the conventions for using HTTP methods (GET, POST, PUT, DELETE) to 
create, read, update, and delete resources. 

●​ Project-Based Learning: Building Scalable Backends: To apply these concepts, 
students will undertake projects inspired by leading Indian tech companies. 
○​ Project 1: Replicating the Core of PhonePe's Transaction System: Students will 

build a backend service that mimics PhonePe's ability to handle transactions. They'll 
use Node.js and Express to create API endpoints for initiating payments and checking 
transaction status, and use MongoDB to store user and transaction data. This project 
solidifies their understanding of building reliable APIs for financial applications. 

○​ Project 2: Building a Zerodha-Inspired Trading Backend: Students will tackle the 
challenge of real-time data and low-latency transactions. They will build a backend 
that can manage user orders and simulate a real-time data feed. This project will 
emphasize the use of PostgreSQL for its transactional integrity, giving them 
experience with the demands of high-performance financial platforms. 

 

Phase II (Months 4-5): Architecting for Scale and 
Intelligence 
Having established a robust foundation, students in Phase II transition from building features 
to designing systems. The focus shifts to the critical non-functional requirements—scalability, 
reliability, and availability—that define production-grade software. 

 

Module: High-Scale System Design 
 

This module demystifies the process of designing software capable of serving millions of 
users through practical, case-study-driven learning. 

●​ Core Concepts: The module begins with an industry-focused overview of essential 
concepts: 
○​ Vertical vs. Horizontal Scaling 
○​ Load Balancing and Caching 
○​ Database Sharding and Replication 
○​ The CAP Theorem (Consistency, Availability, Partition Tolerance) 
○​ SQL vs. NoSQL at Scale 

●​ Case Study Method: The core of the module is a "deconstruction" of real-world, 
hyper-scale systems. This approach uses recognizable companies to make architectural 
challenges and solutions more tangible and inspiring. 



 

Deconstructing Zerodha: Blueprint for a Low-Latency Trading Platform 

 

●​ Problem Context: The first case study examines Zerodha, India's largest stock 
brokerage. The central challenge is to design a platform that handles millions of 
concurrent users and processes millions of orders per day with extremely low latency. 

●​ Architectural Deep Dive: Students will analyze key architectural decisions, such as: 
○​ Polyglot Backend: The strategic use of different languages (like Go and Python) for 

different tasks. 
○​ Purpose-Driven Data Layer: A multi-database strategy using PostgreSQL for 

transactions and Redis for high-speed caching. 
○​ Event-Driven Microservices: The use of message queues like Kafka to create a 

decoupled, scalable, and fault-tolerant architecture. 
○​ Scalability Pattern: The "Silo" Architecture: A key lesson in horizontal scaling 

where independent, self-contained setups each serve a subset of users, preventing 
system-wide failures. 

 

Deconstructing PhonePe: Engineering for a Billion-Transaction Ecosystem 

 

●​ Problem Context: The second case study focuses on PhonePe, a leading digital 
payments platform. The challenge here is engineering for massive transaction volume, 
extreme reliability, and providing users with an instantaneous and accurate transaction 
history. 

●​ Architectural Deep Dive: Students will dissect PhonePe's architecture, focusing on: 
○​ Classic 3-Tier Architecture: An examination of their implementation of the 

Presentation (React.js), Application (Node.js/Express.js), and Data (MongoDB) layers. 
○​ Core Component: The Transaction Store (TStore): A deep dive into the design of 

TStore, the backbone of their system. Students will learn about the critical decision to 
separate read and write paths for independent scaling, using Kafka as a Write-Ahead 
Log for durability. 

○​ Platform Engineering Principles: An exploration of PhonePe's mature engineering 
culture, including their use of server-driven UI, robust CI/CD pipelines, and internal 
SDKs to standardize functionalities. 

 

 



Module: Building with Agentic AI 
 

This module introduces students to the next major paradigm in software development: 
Agentic AI. This equips graduates with a significant competitive advantage and signals to 
employers their readiness for the future of the industry. 

●​ Foundational Concepts: The module begins by establishing a clear conceptual 
framework for Agentic AI. 
○​ The Core Loop: Students will learn the fundamental operational cycle of an AI agent: 

Perception (gathering data) -> Reasoning (analyzing data and formulating a 
strategy) -> Planning (breaking a goal into steps) -> Action (executing tasks) -> 
Reflection (learning from the outcome). 

○​ Key Distinctions: The curriculum will define the difference between Generative AI 
(a tool for content creation) and Agentic AI (a system that orchestrates multiple 
agents to pursue complex, multi-step goals with minimal human intervention). 

●​ Project-Based Learning: The theoretical concepts are immediately put into practice 
through hands-on project work. 
○​ Project A: AI Research Agent: Students will build an autonomous agent that, given 

a research query, can independently browse the web, synthesize content from 
multiple sources, and compile a structured report. 

○​ Project B: Personalized Study Plan Generator: Students will create an educational 
agent that assesses a user's knowledge level on a topic and then autonomously 
generates a tailored, week-by-week study plan with curated links to articles, videos, 
and exercises. 

 

Phase III (Month 6): The Capstone & Career Launchpad 
The final month of the program is an intensive synthesis of all preceding learning. This phase 
transitions students from learners to professional-caliber engineers, focusing on 
demonstrating mastery and activating their careers. 

 

The Capstone Project: A Full-Spectrum Demonstration 
 

The capstone project serves as the centerpiece of each student's professional portfolio. It is a 
demanding, team-based endeavor to design, build, and deploy a production-grade web 
application. 

●​ Objective: Working in small, agile teams, students will execute a complex software 



project from the ground up. The project is intentionally designed to be a rich source of 
talking points for future interviews, forcing students to make non-trivial architectural 
decisions. 

●​ Core Requirements: Every capstone project must satisfy a set of stringent technical 
requirements: 
1.​ Full Stack Implementation: The application must feature a modern frontend built 

with React and a robust backend built with Node.js, connected to a PostgreSQL or 
MongoDB database. 

2.​ Scalable Architecture: The backend must incorporate at least two advanced 
concepts from the System Design module, such as a caching layer with Redis or a 
message queue for asynchronous tasks. 

3.​ Integrated Agentic AI Feature: The application must include a meaningful feature 
powered by an AI agent, such as a conversational shopping assistant or an 
automated task generator. 

4.​ Professional Deployment & CI/CD: The project must be deployed to a public cloud 
platform (e.g., AWS, Vercel) and include a basic Continuous 
Integration/Continuous Deployment (CI/CD) pipeline using tools like GitHub 
Actions. 

The completed capstone project serves as tangible, compelling evidence of a student's ability 
to build complex, modern software. 

 

Placement Readiness Protocol 
 

This protocol is a systematic series of workshops and simulations designed to prepare 
students for the rigors of the technical hiring process. 

●​ Professional Branding Workshop: A hands-on workshop focused on crafting the 
essential artifacts of a professional job search. Career coaches work with students to 
optimize their resume, build a sophisticated LinkedIn profile, and curate a polished 
GitHub portfolio. 

●​ Behavioral Interview Preparation: This workshop trains students on mastering the 
behavioral interview. They learn to use structured frameworks like the STAR (Situation, 
Task, Action, Result) method to articulate their experiences effectively. 

●​ High-Fidelity Mock Interviews (Maximum 2 per student): The cornerstone of our 
placement preparation is a pair of rigorous, one-on-one mock interviews with seasoned 
industry professionals. These are not simple Q&A sessions; they are full-length, 
high-pressure simulations designed to mirror the actual interview process at top tech 
companies. Each 60-minute interview is a comprehensive assessment, covering a mix of 
data structures, algorithms, and system design questions. This integrated approach 



prepares students for the reality of modern technical interviews, where they must 
demonstrate proficiency across multiple domains in a single session. The limit of two 
interviews per student ensures each session is of the highest quality and is followed by 
in-depth, personalized feedback. 

●​ Personalized Feedback and Action Plan: Each mock interview is immediately followed 
by a detailed feedback session. The interviewer provides a comprehensive breakdown of 
the student's performance, highlighting strengths and identifying specific, actionable 
areas for improvement. 

 

The 24-Week PRSE Program Schedule 
The following matrix provides a detailed, week-by-week operational plan for the entire 
24-week program. This schedule serves as a clear roadmap for university partners, 
instructors, and students, illustrating the program's intensive pace and strategic milestones. 

 

Table 1: The 24-Week PRSE Curriculum Matrix 
 

Week DSA Track 
(Topic & Key 
Patterns) 

Full Stack 
Track (Topic 
& Project 
Milestone) 

Advanced 
Topics & 
Capstone 

Career Prep 
& 
Assessment 

1 Program 
Orientation & 
Setup. 
Algorithmic 
Complexity 
(Big O). 

Frontend: 
HTML 
Fundamentals 
& Semantic 
Markup. 

- Initial Skills 
Assessment. 

2 Arrays & 
Strings. 
Foundational 
Problem 
Solving. 

Frontend: 
Intro to CSS, 
Selectors, The 
Cascade. 

- - 

3 Pattern 1: Two Frontend: CSS - - 



Pointers 
(Slow/Fast, 
Opposite 
Ends). 

Deep Dive: The 
Box Model & 
Positioning. 

4 Pattern 2: 
Sliding 
Window. 

Frontend: CSS 
Deep Dive: 
Flexbox & Grid. 
Milestone: 
Build a 
complex 
responsive 
portfolio page. 

- Skill 
Contest #1: 
Arrays, 
Strings, Two 
Pointers. 

5 Pattern 3: 
In-place 
Reversal of a 
Linked List. 

Frontend: 
JavaScript 
Fundamentals 
(ES6+), Scope, 
Closures. 

- - 

6 Stacks & 
Queues. 

Frontend: 
JavaScript 
Asynchronous 
Programming 
(Promises, 
async/await). 

- - 

7 Pattern 4: 
Tree Traversal 
- BFS. 

Frontend: 
DOM 
Manipulation & 
Events. 
Milestone: 
Build an 
interactive 
vanilla JS 
application 
(e.g., To-Do 
List). 

- Skill 
Contest #2: 
Linked Lists, 
Stacks, 
Queues. 

8 Pattern 5: 
Tree Traversal 

"Build Your 
Own React": 

- - 



- DFS. Step I & II - 
createElement 
& render. 

9 Pattern 6: 
Merge 
Intervals. 

"Build Your 
Own React": 
Step III & IV - 
Concurrent 
Mode & Fibers. 

- - 

10 Pattern 7: 
Cyclic Sort. 

"Build Your 
Own React": 
Step V & VI - 
Reconciliation 
& Commit 
Phase. 

- Skill 
Contest #3: 
Trees & 
Intervals. 

11 Pattern 8: 
Heaps / 
Priority 
Queues. 

"Build Your 
Own React": 
Step VII & VIII - 
Function 
Components & 
useState Hook. 
Milestone: 
Complete 
simplified 
React library. 

- - 

12 Pattern 9: 
Binary Search 
(and its 
variations). 

Official 
React: Intro to 
modern React, 
JSX, 
Components, 
Props, State. 

- Mid-Program 
Review. 

13 Pattern 10: 
Greedy 
Algorithms. 

Official 
React: Hooks 
(useEffect, 
useContext), 
Client-Side 
Routing with 

- - 



React Router. 
Milestone: 
Build a 
multi-page 
React 
application. 

14 Pattern 11: 
Backtracking. 

Backend: Intro 
to Node.js & 
Express. 
Building a 
simple web 
server. 

- Skill 
Contest #4: 
Heaps, 
Binary 
Search, 
Greedy. 

15 Pattern 12: 
Dynamic 
Programming 
(1D). 

Backend: 
RESTful API 
Design. 
Building CRUD 
endpoints. 

System Design: 
Core Concepts 
(Scaling, 
Caching, Load 
Balancing, CAP 
Theorem). 

- 

16 Pattern 13: 
Dynamic 
Programming 
(2D). 

Backend: Intro 
to SQL & 
PostgreSQL. 
Project: Start 
Zerodha-inspir
ed backend. 

System Design: 
Deconstructing 
Zerodha's 
Low-Latency 
Architecture. 

Career 
Prep: 
Resume & 
LinkedIn 
Workshop. 

17 Pattern 14: 
Topological 
Sort. 

Backend: Intro 
to NoSQL & 
MongoDB. 
Project: Start 
PhonePe-inspi
red backend. 

System Design: 
Deconstructing 
PhonePe's 
TStore 
Architecture. 

- 

18 Pattern 15: 
Graphs (Matrix 
Traversal, 
Union-Find). 

Full Stack 
Integration: 
Connecting 
React 
Frontend to 
Node.js 

Agentic AI: 
Foundational 
Concepts (The 
Agentic Loop). 

Skill 
Contest #5: 
DP, 
Backtracking
, Graphs. 



Backend. 
Milestone: 
Complete 
full-stack 
MERN/PERN 
application. 

19 DSA Review & 
Advanced 
Problems. 

Project 
Refinement & 
Bug Fixing. 

Agentic AI: 
Project Work - AI 
Research Agent 
or Personalized 
Study Planner. 

Career 
Prep: 
Behavioral 
Interview 
Workshop 
(STAR 
Method). 

20 DSA Review & 
Advanced 
Problems. 

- Agentic AI: 
Project Work - 
Tool Integration 
& API Calls. 

- 

21 - - Capstone 
Project: Team 
Formation, 
Ideation, and 
System Design 
Document. 

Mock 
Interview 
#1. 

22 - - Capstone 
Project: 
Backend & 
Database 
Implementation. 

Mock 
Interview 
#2. 

23 - - Capstone 
Project: 
Frontend 
Implementation 
& AI Feature 
Integration. 

- 



24 - - Capstone 
Project: 
Finalization, 
Deployment, and 
Demo Day 
Presentations. 

Program 
Graduation & 
Final 
Portfolio 
Review. 

 


	The Placement-Ready Software Engineer (PRSE) Program: A Curriculum for Elite Talent Development 
	The PRSE Program: An Architectural Overview 
	The Modern Tech Talent Gap: A University-Industry Bridge 
	Program Philosophy: Engineering from First Principles 
	The High-Intensity, Part-Time Learning Model 
	The ACP Framework: Assessment, Cohorting, and Personalization 

	 
	 
	Phase I (Months 1-3): Engineering from First Principles 
	Module: Algorithmic Thinking via Pattern Recognition (DSA) 
	Module: Full Stack Craftsmanship 
	Frontend Engineering: Mastering the Visual Layer 
	The Differentiator: "Build Your Own React" 
	Backend Foundations: Building the Server-Side 


	Phase II (Months 4-5): Architecting for Scale and Intelligence 
	Module: High-Scale System Design 
	Deconstructing Zerodha: Blueprint for a Low-Latency Trading Platform 
	Deconstructing PhonePe: Engineering for a Billion-Transaction Ecosystem 

	 
	Module: Building with Agentic AI 

	Phase III (Month 6): The Capstone & Career Launchpad 
	The Capstone Project: A Full-Spectrum Demonstration 
	Placement Readiness Protocol 

	The 24-Week PRSE Program Schedule 
	Table 1: The 24-Week PRSE Curriculum Matrix 



